Nuprl Lemma : universe-term_wf
∀[G:j⊢]. (t𝕌 ∈ {G ⊢ _:c𝕌'})
Proof
Definitions occuring in Statement : 
universe-term: t𝕌
, 
cubical-universe: c𝕌
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
universe-term: t𝕌
, 
member: t ∈ T
, 
universe-encode: encode(T;cT)
Lemmas referenced : 
universe-encode_wf, 
cubical-universe_wf, 
univ-comp_wf, 
cubical_set_wf, 
csm-cubical-universe, 
csm-univ-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
Error :memTop, 
sqequalRule
Latex:
\mforall{}[G:j\mvdash{}].  (t\mBbbU{}  \mmember{}  \{G  \mvdash{}  \_:c\mBbbU{}'\})
Date html generated:
2020_05_20-PM-07_24_50
Last ObjectModification:
2020_04_25-PM-10_05_31
Theory : cubical!type!theory
Home
Index