Nuprl Lemma : universe-term_wf

[G:j⊢]. (t𝕌 ∈ {G ⊢ _:c𝕌'})


Proof




Definitions occuring in Statement :  universe-term: t𝕌 cubical-universe: c𝕌 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] universe-term: t𝕌 member: t ∈ T universe-encode: encode(T;cT)
Lemmas referenced :  universe-encode_wf cubical-universe_wf univ-comp_wf cubical_set_wf csm-cubical-universe csm-univ-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis universeIsType Error :memTop,  sqequalRule

Latex:
\mforall{}[G:j\mvdash{}].  (t\mBbbU{}  \mmember{}  \{G  \mvdash{}  \_:c\mBbbU{}'\})



Date html generated: 2020_05_20-PM-07_24_50
Last ObjectModification: 2020_04_25-PM-10_05_31

Theory : cubical!type!theory


Home Index