Nuprl Lemma : universe-type-at
∀[X:j⊢]. ∀[t:{X ⊢ _:c𝕌}]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[K:fset(ℕ)]. ∀[f:K ⟶ I].
  (universe-type(t;I;a)(f) = decode(t)(f(a)) ∈ Type)
Proof
Definitions occuring in Statement : 
universe-decode: decode(t), 
universe-type: universe-type(t;I;a), 
cubical-universe: c𝕌, 
cubical-term: {X ⊢ _:A}, 
cubical-type-at: A(a), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
names-hom: I ⟶ J, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
formal-cube: formal-cube(I), 
true: True, 
squash: ↓T, 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
names-hom_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
formal-cube_wf1, 
subtype_rel_self, 
cubical-type-at_wf, 
universe-decode_wf, 
cube-set-restriction_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
universe-decode-type, 
iff_weakening_equal, 
csm-universe-decode, 
csm-ap-type-at, 
csm-ap-context-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
instantiate, 
universeEquality, 
applyEquality, 
sqequalRule, 
natural_numberEquality, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  I].
    (universe-type(t;I;a)(f)  =  decode(t)(f(a)))
Date html generated:
2020_05_20-PM-07_12_15
Last ObjectModification:
2020_04_25-PM-09_28_18
Theory : cubical!type!theory
Home
Index