Nuprl Lemma : Euclid-Prop19-weak
∀e:EuclideanPlane. ∀a,b,c:Point.  (a # bc ⇒ bca < abc ⇒ (¬¬|ab| < |ac|))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
geo-lt: p < q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
guard: {T}, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
prop: ℙ, 
uimplies: b supposing a, 
stable: Stable{P}, 
euclidean-plane: EuclideanPlane, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
geo-tri: Triangle(a;b;c)
Lemmas referenced : 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-lsep_wf, 
geo-lt-angle_wf, 
istype-void, 
geo-length-type_wf, 
equal_wf, 
double-negation-hyp-elim, 
geo-lt_wf, 
not_wf, 
stable__not, 
geo-mk-seg_wf, 
geo-length_wf, 
not-lt-or, 
lsep-all-sym, 
Euclid-Prop18, 
geo-lt-angle-symm2, 
geo-lt-angle-symm, 
lt-angle-not-cong, 
geo-lt-angle-trans, 
Euclid-Prop5_1, 
geo-congruent-iff-length, 
lsep-implies-sep, 
geo-sep-sym, 
lt-angle-not-cong2, 
geo-cong-angle-symmetry
Rules used in proof : 
instantiate, 
applyEquality, 
equalityIstype, 
universeIsType, 
unionIsType, 
inhabitedIsType, 
functionIsType, 
voidElimination, 
lambdaEquality_alt, 
unionElimination, 
independent_functionElimination, 
unionEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
sqequalRule, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  bca  <  abc  {}\mRightarrow{}  (\mneg{}\mneg{}|ab|  <  |ac|))
Date html generated:
2019_10_16-PM-02_15_51
Last ObjectModification:
2018_12_20-PM-01_35_08
Theory : euclidean!plane!geometry
Home
Index