Nuprl Lemma : Euclid-Prop28_2
∀e:EuclideanPlane. ∀a,b,c,d,x,y,p:Point.
  (((Colinear(x;a;b) ∧ Colinear(y;c;d)) ∧ (a leftof yx ∧ a-x-b) ∧ (c leftof xy ∧ c-y-d) ∧ p-x-y ∧ Ryxa ∧ Rxyc)
  ⇒ geo-parallel-points(e;a;b;c;d))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
euclidean-plane: EuclideanPlane, 
right-angle: Rabc, 
geo-colinear: Colinear(a;b;c), 
geo-strict-between: a-b-c, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
cand: A c∧ B, 
basic-geometry: BasicGeometry
Lemmas referenced : 
adjacent-right-angles-supplementary, 
left-implies-sep, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-left_wf, 
geo-strict-between_wf, 
right-angle_wf, 
geo-point_wf, 
Euclid-Prop27, 
geo-sep-sym, 
geo-right-angles-congruent, 
geo-cong-angle-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
productIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,x,y,p:Point.
    (((Colinear(x;a;b)  \mwedge{}  Colinear(y;c;d))
    \mwedge{}  (a  leftof  yx  \mwedge{}  a-x-b)
    \mwedge{}  (c  leftof  xy  \mwedge{}  c-y-d)
    \mwedge{}  p-x-y
    \mwedge{}  Ryxa
    \mwedge{}  Rxyc)
    {}\mRightarrow{}  geo-parallel-points(e;a;b;c;d))
Date html generated:
2019_10_16-PM-02_38_19
Last ObjectModification:
2019_06_20-PM-05_43_18
Theory : euclidean!plane!geometry
Home
Index