Nuprl Lemma : adjacent-right-angles
∀e:BasicGeometry. ∀a,b,c,a':Point.  (b ≠ c ⇒ Rabc ⇒ Ra'bc ⇒ Colinear(a;b;a'))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
right-angle: Rabc, 
geo-colinear: Colinear(a;b;c), 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
right-angle: Rabc, 
geo-midpoint: a=m=b, 
and: P ∧ Q, 
basic-geometry: BasicGeometry, 
uiff: uiff(P;Q)
Lemmas referenced : 
symmetric-point-construction, 
geo-midpoint-symmetry, 
right-angle_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-point_wf, 
upper-dimension-axiom, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-between-sep, 
geo-sep-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
rename, 
because_Cache, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a':Point.    (b  \mneq{}  c  {}\mRightarrow{}  Rabc  {}\mRightarrow{}  Ra'bc  {}\mRightarrow{}  Colinear(a;b;a'))
Date html generated:
2018_05_22-PM-00_02_42
Last ObjectModification:
2018_04_02-AM-11_09_13
Theory : euclidean!plane!geometry
Home
Index