Nuprl Lemma : angle-cong-preserves-straight-angle
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (x_y_z ⇒ abc ≅a xyz ⇒ a-b-c)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-between: a_b_c, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-strict-between: a-b-c, 
and: P ∧ Q, 
geo-cong-angle: abc ≅a xyz, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
basic-geometry-: BasicGeometry-, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
geo-congruent-preserves-strict-between, 
geo-between-symmetry, 
geo-between-outer-trans, 
geo-sep-sym, 
geo-between-exchange4, 
euclidean-plane-axioms, 
geo-between-sep, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-strict-between-implies-between, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-cong-angle_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (x\_y\_z  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  a-b-c)
Date html generated:
2019_10_16-PM-01_56_50
Last ObjectModification:
2019_08_30-AM-10_22_13
Theory : euclidean!plane!geometry
Home
Index