Nuprl Lemma : congruent-half-plane-angles-implies-right-angles
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (c-b-d ⇒ a # cd ⇒ abc ≅a abd ⇒ {Rabd ∧ Rabc})
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
right-angle: Rabc, 
geo-strict-between: a-b-c, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
oriented-plane: OrientedPlane, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
basic-geometry-: BasicGeometry-
Lemmas referenced : 
lsep-colinear-sep, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
adjacent-right-angles-supplementary, 
geo-cong-angle_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-strict-between_wf, 
geo-point_wf, 
geo-cong-angle-symm2, 
geo-strict-between-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType, 
productElimination
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (c-b-d  {}\mRightarrow{}  a  \#  cd  {}\mRightarrow{}  abc  \mcong{}\msuba{}  abd  {}\mRightarrow{}  \{Rabd  \mwedge{}  Rabc\})
Date html generated:
2019_10_16-PM-01_55_22
Last ObjectModification:
2018_11_07-PM-01_03_28
Theory : euclidean!plane!geometry
Home
Index