Nuprl Lemma : geo-between-middle2
∀e:BasicGeometry. ∀a,b,c,d:Point.  (a ≠ d ⇒ a_b_d ⇒ a_c_d ⇒ (¬¬(b_c_d ∨ c_b_d)))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
geo-between-middle, 
iff_weakening_uiff, 
not_wf, 
geo-between_wf, 
not_over_or, 
istype-void, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
sqequalRule, 
unionEquality, 
applyEquality, 
productEquality, 
productElimination, 
voidElimination, 
functionIsType, 
unionIsType, 
universeIsType, 
instantiate, 
independent_isectElimination, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \mneq{}  d  {}\mRightarrow{}  a\_b\_d  {}\mRightarrow{}  a\_c\_d  {}\mRightarrow{}  (\mneg{}\mneg{}(b\_c\_d  \mvee{}  c\_b\_d)))
Date html generated:
2019_10_16-PM-01_20_33
Last ObjectModification:
2019_02_04-PM-08_01_38
Theory : euclidean!plane!geometry
Home
Index