Nuprl Lemma : geo-intersect-iff3
∀e:EuclideanPlane. ∀p,l:LINE.
  (p \/ l
  ⇐⇒ ∃a,b,c,d,v:Point
       ∃sab:a ≠ b
        ∃scd:c ≠ d
         ((p = <a, b, sab> ∈ LINE)
         ∧ (l = <c, d, scd> ∈ LINE)
         ∧ a-v-b
         ∧ c-v-d
         ∧ a leftof cd
         ∧ b leftof dc
         ∧ c leftof ba
         ∧ d leftof ab))
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M, 
geoline: LINE, 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-left: a leftof bc, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
pair: <a, b>, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
geo-line: Line, 
respects-equality: respects-equality(S;T), 
rev_implies: P ⇐ Q, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
pi1: fst(t), 
pi2: snd(t), 
squash: ↓T, 
true: True, 
rev_uimplies: rev_uimplies(P;Q), 
basic-geometry: BasicGeometry
Lemmas referenced : 
geo-intersect-iff2, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
subtype-respects-equality, 
geoline_wf, 
geo-point_wf, 
geoline-subtype1, 
geo-strict-between_wf, 
geo-left_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-intersect_wf, 
geo-incident_wf, 
geo-strict-between-sep1, 
geo-line-eq-geoline, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-incident-line, 
geo-colinear-same
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
sqequalRule, 
productIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
equalityIstype, 
inhabitedIsType, 
dependent_pairEquality_alt, 
productEquality, 
rename, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:LINE.
    (p  \mbackslash{}/  l
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b,c,d,v:Point
              \mexists{}sab:a  \mneq{}  b
                \mexists{}scd:c  \mneq{}  d
                  ((p  =  <a,  b,  sab>)
                  \mwedge{}  (l  =  <c,  d,  scd>)
                  \mwedge{}  a-v-b
                  \mwedge{}  c-v-d
                  \mwedge{}  a  leftof  cd
                  \mwedge{}  b  leftof  dc
                  \mwedge{}  c  leftof  ba
                  \mwedge{}  d  leftof  ab))
Date html generated:
2019_10_16-PM-02_40_56
Last ObjectModification:
2018_12_12-PM-04_41_44
Theory : euclidean!plane!geometry
Home
Index