Nuprl Lemma : geo-parallel-strict
∀e:EuclideanPlane. ∀a,b:Point.  (geo-parallel(e;a;b;a;b) ⇒ False)
Proof
Definitions occuring in Statement : 
geo-parallel: geo-parallel(e;a;b;c;d), 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
false: False, 
geo-parallel: geo-parallel(e;a;b;c;d), 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
uimplies: b supposing a, 
guard: {T}, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
geo-eq: a ≡ b, 
not: ¬A
Lemmas referenced : 
geo-colinear-same, 
geo-eq_weakening, 
lsep-implies-sep, 
geo-parallel_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
instantiate
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (geo-parallel(e;a;b;a;b)  {}\mRightarrow{}  False)
Date html generated:
2018_05_22-PM-00_14_31
Last ObjectModification:
2017_10_12-PM-01_57_29
Theory : euclidean!plane!geometry
Home
Index