Nuprl Lemma : geo-perp-in-symmetry2
∀e:BasicGeometry. ∀x:Point.  ∀[a,b,c,d:Point].  (ab  ⊥x cd ⇒ ba  ⊥x cd)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd, 
basic-geometry: BasicGeometry, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
geo-perp-in: ab  ⊥x cd, 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
basic-geometry: BasicGeometry, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
prop: ℙ
Lemmas referenced : 
sq_stable__colinear, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
geo-colinear_wf, 
geo-perp-in_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
imageElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.    \mforall{}[a,b,c,d:Point].    (ab    \mbot{}x  cd  {}\mRightarrow{}  ba    \mbot{}x  cd)
Date html generated:
2019_10_16-PM-01_29_05
Last ObjectModification:
2018_11_13-PM-00_25_06
Theory : euclidean!plane!geometry
Home
Index