Nuprl Lemma : geo-perp-trivial-when-colinear
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (b ≠ a ⇒ Colinear(a;b;c) ⇒ ab  ⊥d dc ⇒ d ≡ c)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd, 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-eq: a ≡ b, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-eq: a ≡ b, 
not: ¬A, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
basic-geometry: BasicGeometry, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
geo-perp-in: ab  ⊥x cd, 
geo-perp: ab ⊥ cd, 
exists: ∃x:A. B[x]
Lemmas referenced : 
geo-sep_wf, 
geo-perp-in_wf, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-sep-sym, 
geo-perp-in-symmetry, 
perp-col, 
geo-perp-irrefl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (b  \mneq{}  a  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  ab    \mbot{}d  dc  {}\mRightarrow{}  d  \mequiv{}  c)
Date html generated:
2019_10_16-PM-01_29_37
Last ObjectModification:
2018_12_11-PM-06_11_39
Theory : euclidean!plane!geometry
Home
Index