Nuprl Lemma : perp-col
∀e:BasicGeometry. ∀a,b,c,d,x,y:Point.  (a ≠ b ⇒ ab  ⊥x cd ⇒ x ≠ y ⇒ Colinear(a;b;x) ⇒ Colinear(a;b;y) ⇒ cd  ⊥x xy)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd, 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
geo-perp-in: ab  ⊥x cd, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
true: True, 
squash: ↓T, 
less_than: a < b, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
so_apply: x[s1;s2;s3], 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
or: P ∨ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-perp-in_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf, 
geo-colinear_wf, 
colinear-transitivity-2, 
geo-colinear-same, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
geo-colinear-is-colinear-set, 
exists_wf, 
equal_wf, 
l_member_wf, 
cons_member, 
nil_wf, 
cons_wf, 
geo-colinear-append, 
right-angle-symmetry
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
productEquality, 
inlFormation, 
inrFormation, 
dependent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,x,y:Point.
    (a  \mneq{}  b  {}\mRightarrow{}  ab    \mbot{}x  cd  {}\mRightarrow{}  x  \mneq{}  y  {}\mRightarrow{}  Colinear(a;b;x)  {}\mRightarrow{}  Colinear(a;b;y)  {}\mRightarrow{}  cd    \mbot{}x  xy)
Date html generated:
2017_10_02-PM-06_43_42
Last ObjectModification:
2017_08_05-PM-04_49_37
Theory : euclidean!plane!geometry
Home
Index