Nuprl Lemma : geo-zero-angle-congruence-subst
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (abc ≅a xyx ⇒ aba ≅a xyx)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
geo-out: out(p ab), 
and: P ∧ Q, 
geo-cong-angle: abc ≅a xyz
Lemmas referenced : 
geo-zero-angle-congruence-out, 
geo-cong-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_inversion, 
geo-out_weakening, 
geo-eq_weakening, 
out-preserves-angle-cong_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
universeIsType, 
isectElimination, 
sqequalRule, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
productElimination
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (abc  \mcong{}\msuba{}  xyx  {}\mRightarrow{}  aba  \mcong{}\msuba{}  xyx)
Date html generated:
2019_10_16-PM-01_28_09
Last ObjectModification:
2018_11_08-PM-00_22_05
Theory : euclidean!plane!geometry
Home
Index