Nuprl Lemma : hp-cong-angle-reflexive
∀e:EuclideanPlane. ∀a,b,c:Point.  (a leftof bc ⇒ abc ≅ρ abc)
Proof
Definitions occuring in Statement : 
half-plane-cong-angle: abc ≅ρ dbc, 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
half-plane-cong-angle: abc ≅ρ dbc, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
geo-colinear-same, 
geo-left_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
productElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  abc  \00D0\mrho{}  abc)
Date html generated:
2017_10_02-PM-04_48_58
Last ObjectModification:
2017_08_24-PM-03_37_58
Theory : euclidean!plane!geometry
Home
Index