Nuprl Lemma : not-proj-point-sep-is-equiv
∀e:EuclideanParPlane
  ((∀l,m:Line.  (l \/ m ⇒ (∀n:Line. (l \/ n ∨ m \/ n)))) ⇒ EquivRel(Point + Line;p,q.¬proj-point-sep(e;p;q)))
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q), 
euclidean-parallel-plane: EuclideanParPlane, 
geo-intersect: L \/ M, 
geo-line: Line, 
geo-point: Point, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
union: left + right
Definitions unfolded in proof : 
or: P ∨ Q, 
so_apply: x[s], 
euclidean-parallel-plane: EuclideanParPlane, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
guard: {T}, 
trans: Trans(T;x,y.E[x; y]), 
prop: ℙ, 
false: False, 
not: ¬A, 
sym: Sym(T;x,y.E[x; y]), 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
refl: Refl(T;x,y.E[x; y]), 
and: P ∧ Q, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
proj-point-sep-cotrans, 
proj-point-sep-symmetry, 
or_wf, 
geoline-subtype1, 
geo-intersect_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
all_wf, 
not_wf, 
proj-point-sep_wf, 
geo-line_wf, 
geo-point_wf, 
proj-point-sep-irrefl
Rules used in proof : 
unionElimination, 
rename, 
setElimination, 
functionEquality, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
voidElimination, 
independent_functionElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
isectElimination, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanParPlane
    ((\mforall{}l,m:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (\mforall{}n:Line.  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n))))
    {}\mRightarrow{}  EquivRel(Point  +  Line;p,q.\mneg{}proj-point-sep(e;p;q)))
Date html generated:
2018_05_22-PM-01_14_14
Last ObjectModification:
2018_05_21-PM-02_23_51
Theory : euclidean!plane!geometry
Home
Index