Nuprl Lemma : tarski-erect-perp-or
∀e:HeytingGeometry. ∀a,b,c:Point.  (c # ba ⇒ (∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-perp: ab ⊥ cd, 
geo-colinear: Colinear(a;b;c), 
geo-strict-between: a-b-c, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
heyting-geometry: HeytingGeometry, 
geo-perp-in: ab  ⊥x cd, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
true: True, 
squash: ↓T, 
less_than: a < b, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
geo-triangle: a # bc, 
or: P ∨ Q, 
geo-lsep: a # bc, 
oriented-plane: OrientedPlane, 
uiff: uiff(P;Q), 
basic-geometry-: BasicGeometry-, 
geo-midpoint: a=m=b, 
right-angle: Rabc, 
geo-strict-between: a-b-c, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
geo-perp: ab ⊥ cd
Lemmas referenced : 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
heyting-geometry_wf, 
subtype_rel_transitivity, 
heyting-geometry-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-triangle_wf, 
geo-left-axioms_wf, 
basic-geo-axioms_wf, 
subtype_rel_self, 
geo-colinear-same, 
geo-triangle-symmetry, 
tarski-perp-in-exists, 
geo-proper-extend-exists, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-colinear-is-colinear-set, 
lsep-colinear-sep, 
geo-length-flip, 
geo-congruent-iff-length, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-sep_wf, 
geo-triangle-property, 
geo-sep-sym, 
geo-sep-or, 
geo-strict-between-sep3, 
geo-triangle-colinear2, 
geo-strict-between-implies-colinear, 
geo-strict-between-sep1, 
geo-triangle-colinear, 
geo-congruent-mid-exists, 
geo-perp-midsegments, 
geo-between-implies-colinear, 
midpoint-sep, 
geo-strict-between-sym, 
double-pasch-exists, 
geo-perp-in-iff, 
geo-strict-between_wf, 
geo-colinear_wf, 
geo-perp_wf, 
or_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
exists_wf, 
equal_wf, 
l_member_wf, 
cons_member, 
nil_wf, 
cons_wf, 
oriented-colinear-append, 
right-angle_wf, 
geo-perp-in_wf, 
geo-perp-symmetry2
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
productEquality, 
setEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
rename, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
setElimination, 
lambdaEquality, 
inlFormation, 
inrFormation, 
dependent_pairFormation, 
universeEquality
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (c  \#  ba  {}\mRightarrow{}  (\mexists{}p,t:Point.  (((ab  \mbot{}  pa  \mvee{}  ab  \mbot{}  pb)  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-c)))
Date html generated:
2018_05_22-PM-00_21_17
Last ObjectModification:
2017_10_26-PM-00_37_35
Theory : euclidean!plane!geometry
Home
Index