Nuprl Lemma : triangle-inequality-for-colinear
∀[e:EuclideanPlane]. ∀[a,b,c:Point].  (Colinear(b;a;c) ⇒ |ac| ≤ |ab| + |bc|)
Proof
Definitions occuring in Statement : 
geo-add-length: p + q, 
geo-le: p ≤ q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
basic-geometry-: BasicGeometry-, 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
geo-le: p ≤ q, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
geo-simple-colinear-cases, 
geo-le_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-add-length_wf, 
stable__geo-le, 
geo-add-length-between, 
geo-between_wf, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
subtype_rel_self, 
iff_weakening_equal, 
equal_wf, 
geo-add-length-assoc, 
geo-add-length-comm, 
geo-le-add1, 
geo-length-flip, 
geo-le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
instantiate, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c:Point].    (Colinear(b;a;c)  {}\mRightarrow{}  |ac|  \mleq{}  |ab|  +  |bc|)
Date html generated:
2018_05_22-AM-11_56_41
Last ObjectModification:
2018_03_31-AM-00_56_04
Theory : euclidean!plane!geometry
Home
Index