Nuprl Lemma : geo-simple-colinear-cases
∀[e:BasicGeometry-]. ∀[a,b,c:Point].
  ∀X:ℙ. (Stable{X} ⇒ Colinear(a;b;c) ⇒ (a_b_c ⇒ X) ⇒ (b_c_a ⇒ X) ⇒ (c_a_b ⇒ X) ⇒ X)
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-, 
geo-colinear: Colinear(a;b;c), 
geo-between: a_b_c, 
geo-point: Point, 
stable: Stable{P}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
member: t ∈ T, 
uimplies: b supposing a, 
stable: Stable{P}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
false: False, 
cand: A c∧ B, 
and: P ∧ Q, 
not: ¬A
Lemmas referenced : 
geo-point_wf, 
stable_wf, 
geo-colinear_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
basic-geometry-_wf, 
subtype_rel_transitivity, 
basic-geometry--subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-between_wf, 
not_wf, 
geo-colinear-implies
Rules used in proof : 
universeEquality, 
because_Cache, 
sqequalRule, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
functionEquality, 
thin, 
independent_isectElimination, 
hypothesis, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[e:BasicGeometry-].  \mforall{}[a,b,c:Point].
    \mforall{}X:\mBbbP{}.  (Stable\{X\}  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  (a\_b\_c  {}\mRightarrow{}  X)  {}\mRightarrow{}  (b\_c\_a  {}\mRightarrow{}  X)  {}\mRightarrow{}  (c\_a\_b  {}\mRightarrow{}  X)  {}\mRightarrow{}  X)
Date html generated:
2017_10_02-PM-04_43_38
Last ObjectModification:
2017_08_07-PM-00_24_15
Theory : euclidean!plane!geometry
Home
Index