Nuprl Lemma : ip-triangle-implies

rv:InnerProductSpace. ∀a,b,c:Point.
  (a;b;c)  (c;b;a) ∧ Δ(c;a;b) ∧ c ∧ a_b_c) ∧ (∀z:Point. (z  (¬Δ(a;b;z))  Δ(z;b;c)))))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) ip-between: a_b_c inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: subtype_rel: A ⊆B
Lemmas referenced :  ip-triangle-symmetry ip-triangle-permute ip-triangle-implies-separated ip-triangle-not-between ip-triangle-shift not_wf ip-triangle_wf ss-sep_wf ss-point_wf inner-product-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis independent_pairFormation isectElimination independent_isectElimination because_Cache applyEquality sqequalRule

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.
    (\mDelta{}(a;b;c)
    {}\mRightarrow{}  (\mDelta{}(c;b;a)  \mwedge{}  \mDelta{}(c;a;b)  \mwedge{}  a  \#  c  \mwedge{}  (\mneg{}a\_b\_c)  \mwedge{}  (\mforall{}z:Point.  (z  \#  b  {}\mRightarrow{}  (\mneg{}\mDelta{}(a;b;z))  {}\mRightarrow{}  \mDelta{}(z;b;c)))))



Date html generated: 2017_10_04-PM-11_59_06
Last ObjectModification: 2017_08_10-PM-03_38_19

Theory : inner!product!spaces


Home Index