Nuprl Lemma : ip-triangle-symmetry

rv:InnerProductSpace. ∀a,b,c:Point.  (a;b;c)  Δ(c;b;a))


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-triangle: Δ(a;b;c) member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  ip-triangle_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rmul_comm rv-norm_wf rv-sub_wf real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf rabs_wf rless_functionality req_weakening rabs_functionality rv-ip-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule because_Cache lambdaEquality setElimination rename setEquality productEquality natural_numberEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  \mDelta{}(c;b;a))



Date html generated: 2017_10_04-PM-11_58_06
Last ObjectModification: 2017_03_10-PM-01_16_18

Theory : inner!product!spaces


Home Index