Nuprl Lemma : rv-ip_wf
∀[rv:InnerProductSpace]. ∀[x,y:Point].  (x ⋅ y ∈ ℝ)
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
ss-point: Point, 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
guard: {T}, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
record-select: r.x, 
record+: record+, 
inner-product-space: InnerProductSpace, 
rv-ip: x ⋅ y, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
int-to-real_wf, 
rless_wf, 
rv-0_wf, 
ss-sep_wf, 
rmul_wf, 
rv-mul_wf, 
radd_wf, 
rv-add_wf, 
req_wf, 
all_wf, 
real_wf, 
real-vector-space_subtype1, 
ss-point_wf, 
subtype_rel_self, 
inner-product-space_subtype
Rules used in proof : 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
axiomEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
setEquality, 
isectElimination, 
tokenEquality, 
thin, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
applyEquality, 
hypothesisEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    (x  \mcdot{}  y  \mmember{}  \mBbbR{})
Date html generated:
2016_11_08-AM-09_14_41
Last ObjectModification:
2016_10_31-PM-02_34_37
Theory : inner!product!spaces
Home
Index