Nuprl Lemma : proj-permute_wf
∀[n:ℕ]. ∀[p:ℙ^n]. ∀[f:ℕn + 1 ⟶ ℕn + 1].  proj-permute(p;f) ∈ ℙ^n supposing Surj(ℕn + 1;ℕn + 1;f)
Proof
Definitions occuring in Statement : 
proj-permute: proj-permute(p;f)
, 
real-proj: ℙ^n
, 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
proj-permute: proj-permute(p;f)
, 
subtype_rel: A ⊆r B
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
exists_wf, 
int_seg_wf, 
rneq_wf, 
int-to-real_wf, 
surject_wf, 
real-proj_wf, 
nat_wf, 
compose_wf, 
real_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
isect_memberEquality, 
functionEquality, 
productElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbP{}\^{}n].  \mforall{}[f:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}n  +  1].    proj-permute(p;f)  \mmember{}  \mBbbP{}\^{}n  supposing  Surj(\mBbbN{}n  +  1;\mBbbN{}n  +  1;f)
Date html generated:
2017_10_05-AM-00_20_50
Last ObjectModification:
2017_06_17-AM-10_10_12
Theory : inner!product!spaces
Home
Index