Nuprl Lemma : proj-permute_wf

[n:ℕ]. ∀[p:ℙ^n]. ∀[f:ℕ1 ⟶ ℕ1].  proj-permute(p;f) ∈ ℙ^n supposing Surj(ℕ1;ℕ1;f)


Proof




Definitions occuring in Statement :  proj-permute: proj-permute(p;f) real-proj: ^n surject: Surj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a real-proj: ^n nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] exists: x:A. B[x] prop: proj-permute: proj-permute(p;f) subtype_rel: A ⊆B surject: Surj(A;B;f) all: x:A. B[x] compose: g squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  exists_wf int_seg_wf rneq_wf int-to-real_wf surject_wf real-proj_wf nat_wf compose_wf real_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination natural_numberEquality addEquality hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionExtensionality isect_memberEquality functionEquality productElimination dependent_functionElimination dependent_pairFormation imageElimination imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbP{}\^{}n].  \mforall{}[f:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}n  +  1].    proj-permute(p;f)  \mmember{}  \mBbbP{}\^{}n  supposing  Surj(\mBbbN{}n  +  1;\mBbbN{}n  +  1;f)



Date html generated: 2017_10_05-AM-00_20_50
Last ObjectModification: 2017_06_17-AM-10_10_12

Theory : inner!product!spaces


Home Index