Nuprl Lemma : rv-isometry_wf

[rv:InnerProductSpace]. ∀[f:Point ⟶ Point].  (Isometry(f) ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: and: P ∧ Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B rv-isometry: Isometry(f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmul_wf int-to-real_wf rleq_wf real_wf rv-ip_wf rv-sub_wf rv-norm_wf req_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf uall_wf
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality productEquality setEquality rename setElimination functionExtensionality because_Cache lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f:Point  {}\mrightarrow{}  Point].    (Isometry(f)  \mmember{}  \mBbbP{})



Date html generated: 2016_11_08-AM-09_18_15
Last ObjectModification: 2016_11_02-PM-08_41_39

Theory : inner!product!spaces


Home Index