Nuprl Lemma : rv-orthog-ext_wf
∀rv:InnerProductSpace. ∀f:Point ⟶ Point.
  rv-orthog-ext(rv;f) ∈ ∀x,y:Point.  (f x # f y ⇒ x # y) supposing Orthogonal(f)
Proof
Definitions occuring in Statement : 
rv-orthog-ext: rv-orthog-ext(rv;f), 
rv-orthogonal: Orthogonal(f), 
inner-product-space: InnerProductSpace, 
ss-sep: x # y, 
ss-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rv-orthog-ext: rv-orthog-ext(rv;f), 
rv-orthogonal-implies-extensional-ext, 
so_apply: x[s], 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
ss-sep_wf, 
rv-orthogonal_wf, 
isect_wf, 
separation-space_wf, 
real-vector-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
inner-product-space_wf, 
all_wf, 
rv-orthogonal-implies-extensional-ext
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
cumulativity, 
functionExtensionality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
functionEquality, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.
    rv-orthog-ext(rv;f)  \mmember{}  \mforall{}x,y:Point.    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Orthogonal(f)
Date html generated:
2016_11_08-AM-09_18_40
Last ObjectModification:
2016_11_02-PM-04_27_39
Theory : inner!product!spaces
Home
Index