Nuprl Lemma : rv-orthogonal-id
∀[rv:InnerProductSpace]. Orthogonal(λx.x)
Proof
Definitions occuring in Statement : 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
ss-eq: x ≡ y
, 
rv-orthogonal: Orthogonal(f)
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real_wf, 
rv-mul_wf, 
rv-ip_wf, 
req_witness, 
rv-add_wf, 
ss-sep_wf, 
rv-isometry-id, 
rv-0_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-eq_weakening, 
ss-point_wf, 
rv-orthogonal-iff
Rules used in proof : 
voidElimination, 
independent_pairEquality, 
independent_pairFormation, 
independent_isectElimination, 
instantiate, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
hypothesis, 
because_Cache, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  Orthogonal(\mlambda{}x.x)
Date html generated:
2016_11_08-AM-09_20_39
Last ObjectModification:
2016_11_02-PM-11_44_54
Theory : inner!product!spaces
Home
Index