Nuprl Lemma : rv-orthogonal-id

[rv:InnerProductSpace]. Orthogonal(λx.x)


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace uall: [x:A]. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  prop: false: False not: ¬A ss-eq: x ≡ y rv-orthogonal: Orthogonal(f) uimplies: supposing a guard: {T} cand: c∧ B implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_wf rv-mul_wf rv-ip_wf req_witness rv-add_wf ss-sep_wf rv-isometry-id rv-0_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-eq_weakening ss-point_wf rv-orthogonal-iff
Rules used in proof :  voidElimination independent_pairEquality independent_pairFormation independent_isectElimination instantiate independent_functionElimination productElimination sqequalRule hypothesis because_Cache applyEquality lambdaEquality dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  Orthogonal(\mlambda{}x.x)



Date html generated: 2016_11_08-AM-09_20_39
Last ObjectModification: 2016_11_02-PM-11_44_54

Theory : inner!product!spaces


Home Index