Nuprl Lemma : rv-sep-iff-ext
∀rv:InnerProductSpace. ∀x,y:Point.  (x # y ⇐⇒ x - y # 0)
Proof
Definitions occuring in Statement : 
rv-sub: x - y, 
inner-product-space: InnerProductSpace, 
rv-0: 0, 
ss-sep: x # y, 
ss-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
rv-add-sep2, 
any: any x, 
ss-sep-or, 
ss-sep_functionality, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
squash: ↓T, 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
has-value: (a)↓, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
strict4: strict4(F), 
uimplies: b supposing a, 
top: Top, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
rv-add-sep, 
rv-add-sep1, 
rv-sep-iff, 
member: t ∈ T
Lemmas referenced : 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-spread, 
rv-sep-iff, 
rv-add-sep2, 
ss-sep-or, 
ss-sep_functionality, 
rv-add-sep, 
rv-add-sep1
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x,y:Point.    (x  \#  y  \mLeftarrow{}{}\mRightarrow{}  x  -  y  \#  0)
Date html generated:
2016_11_08-AM-09_16_00
Last ObjectModification:
2016_11_02-PM-03_34_34
Theory : inner!product!spaces
Home
Index