Nuprl Lemma : rv-sub_functionality

[rv:RealVectorSpace]. ∀[x,y,x',y':Point].  (x y ≡ x' y') supposing (y ≡ y' and x ≡ x')


Proof




Definitions occuring in Statement :  rv-sub: y real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] prop: subtype_rel: A ⊆B false: False implies:  Q not: ¬A ss-eq: x ≡ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] rv-sub: y
Lemmas referenced :  rv-minus_functionality rv-add_functionality ss-eq_functionality ss-eq_weakening real-vector-space_wf ss-point_wf ss-eq_wf rv-minus_wf rv-add_wf real-vector-space_subtype1 ss-sep_wf
Rules used in proof :  productElimination independent_isectElimination independent_functionElimination voidElimination equalitySymmetry equalityTransitivity isect_memberEquality hypothesis applyEquality isectElimination extract_by_obid because_Cache hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y,x',y':Point].    (x  -  y  \mequiv{}  x'  -  y')  supposing  (y  \mequiv{}  y'  and  x  \mequiv{}  x')



Date html generated: 2016_11_08-AM-09_15_26
Last ObjectModification: 2016_10_31-PM-11_30_16

Theory : inner!product!spaces


Home Index