Nuprl Lemma : rv-sub_functionality
∀[rv:RealVectorSpace]. ∀[x,y,x',y':Point].  (x - y ≡ x' - y') supposing (y ≡ y' and x ≡ x')
Proof
Definitions occuring in Statement : 
rv-sub: x - y, 
real-vector-space: RealVectorSpace, 
ss-eq: x ≡ y, 
ss-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
ss-eq: x ≡ y, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
rv-sub: x - y
Lemmas referenced : 
rv-minus_functionality, 
rv-add_functionality, 
ss-eq_functionality, 
ss-eq_weakening, 
real-vector-space_wf, 
ss-point_wf, 
ss-eq_wf, 
rv-minus_wf, 
rv-add_wf, 
real-vector-space_subtype1, 
ss-sep_wf
Rules used in proof : 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
extract_by_obid, 
because_Cache, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x,y,x',y':Point].    (x  -  y  \mequiv{}  x'  -  y')  supposing  (y  \mequiv{}  y'  and  x  \mequiv{}  x')
Date html generated:
2016_11_08-AM-09_15_26
Last ObjectModification:
2016_10_31-PM-11_30_16
Theory : inner!product!spaces
Home
Index