Nuprl Lemma : topeq_inversion
∀X:Space. ∀a,b:|X|.  (topeq(X;a;b) ⇒ topeq(X;b;a))
Proof
Definitions occuring in Statement : 
topeq: topeq(X;a;b), 
toptype: |X|, 
topspace: Space, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
sym: Sym(T;x,y.E[x; y]), 
guard: {T}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
and: P ∧ Q, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
topspace_wf, 
toptype_wf, 
topeq_wf, 
topeq-equiv
Rules used in proof : 
independent_functionElimination, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}X:Space.  \mforall{}a,b:|X|.    (topeq(X;a;b)  {}\mRightarrow{}  topeq(X;b;a))
Date html generated:
2018_07_29-AM-09_48_01
Last ObjectModification:
2018_06_21-AM-10_28_22
Theory : inner!product!spaces
Home
Index