Nuprl Lemma : topfun_wf

[X,Y:Space].  (topfun(X;Y) ∈ Type)


Proof




Definitions occuring in Statement :  topfun: topfun(X;Y) topspace: Space uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] topfun: topfun(X;Y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  topspace_wf topeq_wf all_wf toptype_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality applyEquality lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Space].    (topfun(X;Y)  \mmember{}  Type)



Date html generated: 2018_07_29-AM-09_48_14
Last ObjectModification: 2018_06_21-AM-10_41_49

Theory : inner!product!spaces


Home Index