Nuprl Lemma : trans-apply-add
∀rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point. ∀t,s:ℝ.
  ∀x:Point. T_t + s(x) ≡ T_t(T_s(x)) supposing ∃e:Point. translation-group-fun(rv;e;T)
Proof
Definitions occuring in Statement : 
trans-apply: T_t(x), 
translation-group-fun: translation-group-fun(rv;e;T), 
inner-product-space: InnerProductSpace, 
radd: a + b, 
real: ℝ, 
ss-eq: x ≡ y, 
ss-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
translation-group-fun: translation-group-fun(rv;e;T), 
and: P ∧ Q, 
trans-apply: T_t(x), 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
ss-eq: x ≡ y, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep_wf, 
trans-apply_wf, 
real_wf, 
radd_wf, 
exists_wf, 
translation-group-fun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
functionExtensionality, 
because_Cache, 
functionEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.  \mforall{}t,s:\mBbbR{}.
    \mforall{}x:Point.  T\_t  +  s(x)  \mequiv{}  T\_t(T\_s(x))  supposing  \mexists{}e:Point.  translation-group-fun(rv;e;T)
Date html generated:
2017_10_05-AM-00_21_39
Last ObjectModification:
2017_06_26-AM-10_08_12
Theory : inner!product!spaces
Home
Index