Nuprl Lemma : trans-kernel-0
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  ((e^2 = r1) ⇒ translation-group-fun(rv;e;T) ⇒ (∀h:{h:Point| h ⋅ e = r0} . (ρ(h;r0) = r0)))
Proof
Definitions occuring in Statement : 
trans-kernel: ρ(h;t), 
translation-group-fun: translation-group-fun(rv;e;T), 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
ss-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
trans-kernel-fun: trans-kernel-fun(rv;e;f), 
and: P ∧ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
trans-kernel-is-kernel-fun, 
set_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
translation-group-fun_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
natural_numberEquality, 
because_Cache, 
functionExtensionality, 
functionEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((e\^{}2  =  r1)  {}\mRightarrow{}  translation-group-fun(rv;e;T)  {}\mRightarrow{}  (\mforall{}h:\{h:Point|  h  \mcdot{}  e  =  r0\}  .  (\mrho{}(h;r0)  =  r0)))
Date html generated:
2017_10_05-AM-00_23_23
Last ObjectModification:
2017_07_02-PM-03_19_12
Theory : inner!product!spaces
Home
Index