Nuprl Lemma : lattice-0-meet
∀[l:BoundedLattice]. ∀[x:Point(l)]. (x ∧ 0 = 0 ∈ Point(l))
Proof
Definitions occuring in Statement :
bdd-lattice: BoundedLattice
,
lattice-0: 0
,
lattice-meet: a ∧ b
,
lattice-point: Point(l)
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
true: True
,
bdd-lattice: BoundedLattice
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
Lemmas referenced :
lattice-meet-0,
equal_wf,
squash_wf,
true_wf,
lattice_properties,
bdd-lattice-subtype-lattice,
lattice-point_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
bdd-lattice_wf
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hyp_replacement,
equalitySymmetry,
sqequalRule,
applyEquality,
lambdaEquality,
imageElimination,
equalityTransitivity,
universeEquality,
because_Cache,
productElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
instantiate,
productEquality,
cumulativity,
independent_isectElimination
Latex:
\mforall{}[l:BoundedLattice]. \mforall{}[x:Point(l)]. (x \mwedge{} 0 = 0)
Date html generated:
2016_10_26-PM-00_54_36
Last ObjectModification:
2016_07_12-AM-08_56_56
Theory : lattices
Home
Index