Step
*
1
1
1
1
2
2
of Lemma
free-iso-int_wf
1. S : Type
2. s : S
3. ∀x,y:S. (x = y ∈ S)
4. λx.Σ(p∈x). let k,s = p
in k * 1 ∈ free-vs(ℤ-rng;S) ⟶ ℤ
5. λk.{<k * 1, s>} ∈ ℤ ⟶ free-vs(ℤ-rng;S)
6. λb.Ax ∈ ∀a:Point(free-vs(ℤ-rng;S)). ({<Σ(p∈a). let k,s = p in k * 1 * 1, s>} = a ∈ Point(free-vs(ℤ-rng;S)))
7. λa.Ax ∈ ∀b:Point(ℤ). (Σ(p∈{<b * 1, s>}). let k,s = p in k * 1 = b ∈ Point(ℤ))
⊢ <λb.Ax, λa.Ax>
= <λb.Ax, λa.Ax>
∈ ((∀a:Point(free-vs(ℤ-rng;S)). ({<Σ(p∈a). let k,s = p in k * 1 * 1, s>} = a ∈ Point(free-vs(ℤ-rng;S))))
∧ (∀b:Point(ℤ). (Σ(p∈{<b * 1, s>}). let k,s = p in k * 1 = b ∈ Point(ℤ))))
BY
{ (Fold `member` 0 THEN Unfold `and` 0) }
1
1. S : Type
2. s : S
3. ∀x,y:S. (x = y ∈ S)
4. λx.Σ(p∈x). let k,s = p
in k * 1 ∈ free-vs(ℤ-rng;S) ⟶ ℤ
5. λk.{<k * 1, s>} ∈ ℤ ⟶ free-vs(ℤ-rng;S)
6. λb.Ax ∈ ∀a:Point(free-vs(ℤ-rng;S)). ({<Σ(p∈a). let k,s = p in k * 1 * 1, s>} = a ∈ Point(free-vs(ℤ-rng;S)))
7. λa.Ax ∈ ∀b:Point(ℤ). (Σ(p∈{<b * 1, s>}). let k,s = p in k * 1 = b ∈ Point(ℤ))
⊢ <λb.Ax, λa.Ax> ∈ ∀a:Point(free-vs(ℤ-rng;S)). ({<Σ(p∈a). let k,s = p in k * 1 * 1, s>} = a ∈ Point(free-vs(ℤ-rng;S))) ×\000C (∀b:Point(ℤ)
(Σ(p∈{<b * 1, s>})
let k,s = p
in k * 1
= b
∈ Point(ℤ)))
Latex:
Latex:
1. S : Type
2. s : S
3. \mforall{}x,y:S. (x = y)
4. \mlambda{}x.\mSigma{}(p\mmember{}x). let k,s = p
in k * 1 \mmember{} free-vs(\mBbbZ{}-rng;S) {}\mrightarrow{} \mBbbZ{}
5. \mlambda{}k.\{<k * 1, s>\} \mmember{} \mBbbZ{} {}\mrightarrow{} free-vs(\mBbbZ{}-rng;S)
6. \mlambda{}b.Ax \mmember{} \mforall{}a:Point(free-vs(\mBbbZ{}-rng;S)). (\{<\mSigma{}(p\mmember{}a). let k,s = p in k * 1 * 1, s>\} = a)
7. \mlambda{}a.Ax \mmember{} \mforall{}b:Point(\mBbbZ{}). (\mSigma{}(p\mmember{}\{<b * 1, s>\}). let k,s = p in k * 1 = b)
\mvdash{} <\mlambda{}b.Ax, \mlambda{}a.Ax> = <\mlambda{}b.Ax, \mlambda{}a.Ax>
By
Latex:
(Fold `member` 0 THEN Unfold `and` 0)
Home
Index