Step
*
of Lemma
implies-vs-subspace
∀K:Rng. ∀vs:VectorSpace(K).
∀[P:Point(vs) ⟶ ℙ]. (P[0]
⇒ (∀x,y:Point(vs). (P[x]
⇒ P[y]
⇒ (∀k:|K|. P[k * x + y])))
⇒ vs-subspace(K;vs;x.P[x]))
BY
{ (Auto THEN D 0 THEN Reduce 0 THEN Auto) }
1
1. K : Rng
2. vs : VectorSpace(K)
3. [P] : Point(vs) ⟶ ℙ
4. P[0]
5. ∀x,y:Point(vs). (P[x]
⇒ P[y]
⇒ (∀k:|K|. P[k * x + y]))
6. x : Point(vs)
7. y : Point(vs)
8. P[x]
9. P[y]
⊢ P[x + y]
2
1. K : Rng
2. vs : VectorSpace(K)
3. [P] : Point(vs) ⟶ ℙ
4. P[0]
5. ∀x,y:Point(vs). (P[x]
⇒ P[y]
⇒ (∀k:|K|. P[k * x + y]))
6. ∀x,y:Point(vs). (P[x]
⇒ P[y]
⇒ P[x + y])
7. x : Point(vs)
8. a : |K|
9. P[x]
⊢ P[a * x]
Latex:
Latex:
\mforall{}K:Rng. \mforall{}vs:VectorSpace(K).
\mforall{}[P:Point(vs) {}\mrightarrow{} \mBbbP{}]
(P[0]
{}\mRightarrow{} (\mforall{}x,y:Point(vs). (P[x] {}\mRightarrow{} P[y] {}\mRightarrow{} (\mforall{}k:|K|. P[k * x + y])))
{}\mRightarrow{} vs-subspace(K;vs;x.P[x]))
By
Latex:
(Auto THEN D 0 THEN Reduce 0 THEN Auto)
Home
Index