Step
*
2
1
1
2
1
of Lemma
vs-lift-bfs-reduce
.....assertion.....
1. K : Rng
2. S : Type
3. as : basic-formal-sum(K;S)
4. bs : basic-formal-sum(K;S)
5. cs : basic-formal-sum(K;S)
6. k : |K|
7. k' : |K|
8. fs : Base
9. f1 : Base
10. fs = f1 ∈ pertype(λas,bs. ((as ∈ (|K| × S) List) ∧ (bs ∈ (|K| × S) List) ∧ permutation(|K| × S;as;bs)))
11. fs ∈ (|K| × S) List
12. f1 ∈ (|K| × S) List
13. permutation(|K| × S;fs;f1)
14. as = (cs + k +K k' * fs) ∈ basic-formal-sum(K;S)
15. bs = (cs + k * fs + k' * fs) ∈ basic-formal-sum(K;S)
16. vs : VectorSpace(K)
17. f : S ⟶ Point(vs)
18. IsMonoid(Point(vs);λx,y. x + y;0)
19. Comm(Point(vs);λx,y. x + y)
20. vs-lift(vs;f;k +K k' * fs) = vs-lift(vs;f;k +K k' * f1) ∈ Point(vs)
⊢ vs-lift(vs;f;k +K k' * f1) = vs-lift(vs;f;k * f1) + vs-lift(vs;f;k' * f1) ∈ Point(vs)
BY
{ ((GenConcl ⌜f1 = L ∈ ((|K| × S) List)⌝⋅ THENA Auto) THEN All Thin) }
1
1. K : Rng
2. S : Type
3. k : |K|
4. k' : |K|
5. vs : VectorSpace(K)
6. f : S ⟶ Point(vs)
7. L : (|K| × S) List
⊢ vs-lift(vs;f;k +K k' * L) = vs-lift(vs;f;k * L) + vs-lift(vs;f;k' * L) ∈ Point(vs)
Latex:
Latex:
.....assertion.....
1. K : Rng
2. S : Type
3. as : basic-formal-sum(K;S)
4. bs : basic-formal-sum(K;S)
5. cs : basic-formal-sum(K;S)
6. k : |K|
7. k' : |K|
8. fs : Base
9. f1 : Base
10. fs = f1
11. fs \mmember{} (|K| \mtimes{} S) List
12. f1 \mmember{} (|K| \mtimes{} S) List
13. permutation(|K| \mtimes{} S;fs;f1)
14. as = (cs + k +K k' * fs)
15. bs = (cs + k * fs + k' * fs)
16. vs : VectorSpace(K)
17. f : S {}\mrightarrow{} Point(vs)
18. IsMonoid(Point(vs);\mlambda{}x,y. x + y;0)
19. Comm(Point(vs);\mlambda{}x,y. x + y)
20. vs-lift(vs;f;k +K k' * fs) = vs-lift(vs;f;k +K k' * f1)
\mvdash{} vs-lift(vs;f;k +K k' * f1) = vs-lift(vs;f;k * f1) + vs-lift(vs;f;k' * f1)
By
Latex:
((GenConcl \mkleeneopen{}f1 = L\mkleeneclose{}\mcdot{} THENA Auto) THEN All Thin)
Home
Index