Step
*
1
1
1
of Lemma
vs-lift-unique
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)). ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)). ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. x : Point(free-vs(K;S))
10. {} ∈ Point(free-vs(K;S))
⊢ (h []) = 0 ∈ Point(vs)
BY
{ (Fold `empty-bag` 0 THEN (InstHyp [⌜0⌝;⌜{}⌝] (-4)⋅ THENA Auto)) }
1
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)). ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)). ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. x : Point(free-vs(K;S))
10. {} ∈ Point(free-vs(K;S))
11. (h 0 * {}) = 0 * h {} ∈ Point(vs)
⊢ (h {}) = 0 ∈ Point(vs)
Latex:
Latex:
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S {}\mrightarrow{} Point(vs)
5. h : Point(free-vs(K;S)) {}\mrightarrow{} Point(vs)
6. \mforall{}u,v:Point(free-vs(K;S)). ((h u + v) = h u + h v)
7. \mforall{}a:|K|. \mforall{}u:Point(free-vs(K;S)). ((h a * u) = a * h u)
8. \mforall{}s:S. ((h <s>) = (f s))
9. x : Point(free-vs(K;S))
10. \{\} \mmember{} Point(free-vs(K;S))
\mvdash{} (h []) = 0
By
Latex:
(Fold `empty-bag` 0 THEN (InstHyp [\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}\{\}\mkleeneclose{}] (-4)\mcdot{} THENA Auto))
Home
Index