Step
*
1
1
1
1
of Lemma
vs-lift-unique
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)).  ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)).  ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. x : Point(free-vs(K;S))
10. {} ∈ Point(free-vs(K;S))
11. (h 0 * {}) = 0 * h {} ∈ Point(vs)
⊢ (h {}) = 0 ∈ Point(vs)
BY
{ (NthHypEq (-1) THEN EqCDA) }
1
.....subterm..... T:t
2:n
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)).  ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)).  ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. x : Point(free-vs(K;S))
10. {} ∈ Point(free-vs(K;S))
11. (h 0 * {}) = 0 * h {} ∈ Point(vs)
⊢ (h {}) = (h 0 * {}) ∈ Point(vs)
2
.....subterm..... T:t
3:n
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)).  ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)).  ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. x : Point(free-vs(K;S))
10. {} ∈ Point(free-vs(K;S))
11. (h 0 * {}) = 0 * h {} ∈ Point(vs)
⊢ 0 = 0 * h {} ∈ Point(vs)
Latex:
Latex:
1.  S  :  Type
2.  K  :  CRng
3.  vs  :  VectorSpace(K)
4.  f  :  S  {}\mrightarrow{}  Point(vs)
5.  h  :  Point(free-vs(K;S))  {}\mrightarrow{}  Point(vs)
6.  \mforall{}u,v:Point(free-vs(K;S)).    ((h  u  +  v)  =  h  u  +  h  v)
7.  \mforall{}a:|K|.  \mforall{}u:Point(free-vs(K;S)).    ((h  a  *  u)  =  a  *  h  u)
8.  \mforall{}s:S.  ((h  <s>)  =  (f  s))
9.  x  :  Point(free-vs(K;S))
10.  \{\}  \mmember{}  Point(free-vs(K;S))
11.  (h  0  *  \{\})  =  0  *  h  \{\}
\mvdash{}  (h  \{\})  =  0
By
Latex:
(NthHypEq  (-1)  THEN  EqCDA)
Home
Index