Step
*
1
2
1
1
2
1
of Lemma
vs-lift-unique
.....antecedent.....
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S ⟶ Point(vs)
5. h : Point(free-vs(K;S)) ⟶ Point(vs)
6. ∀u,v:Point(free-vs(K;S)). ((h u + v) = h u + h v ∈ Point(vs))
7. ∀a:|K|. ∀u:Point(free-vs(K;S)). ((h a * u) = a * h u ∈ Point(vs))
8. ∀s:S. ((h <s>) = (f s) ∈ Point(vs))
9. (h []) = 0 ∈ Point(vs)
10. fs : Base
11. f1 : Base
12. fs = f1 ∈ (as,bs:(|K| × S) List//permutation(|K| × S;as;bs))
13. fs ∈ (|K| × S) List
14. f1 ∈ (|K| × S) List
15. permutation(|K| × S;fs;f1)
16. (h fs) = vs-lift(vs;f;fs) ∈ Point(vs)
⊢ bfs-equiv(K;S;fs;f1)
BY
{ ((InstLemma `bfs-equiv-rel` [⌜K⌝;⌜S⌝]⋅ THENA Auto) THEN Assert ⌜fs = f1 ∈ basic-formal-sum(K;S)⌝⋅ THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. S : Type
2. K : CRng
3. vs : VectorSpace(K)
4. f : S {}\mrightarrow{} Point(vs)
5. h : Point(free-vs(K;S)) {}\mrightarrow{} Point(vs)
6. \mforall{}u,v:Point(free-vs(K;S)). ((h u + v) = h u + h v)
7. \mforall{}a:|K|. \mforall{}u:Point(free-vs(K;S)). ((h a * u) = a * h u)
8. \mforall{}s:S. ((h <s>) = (f s))
9. (h []) = 0
10. fs : Base
11. f1 : Base
12. fs = f1
13. fs \mmember{} (|K| \mtimes{} S) List
14. f1 \mmember{} (|K| \mtimes{} S) List
15. permutation(|K| \mtimes{} S;fs;f1)
16. (h fs) = vs-lift(vs;f;fs)
\mvdash{} bfs-equiv(K;S;fs;f1)
By
Latex:
((InstLemma `bfs-equiv-rel` [\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}S\mkleeneclose{}]\mcdot{} THENA Auto) THEN Assert \mkleeneopen{}fs = f1\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index