Nuprl Lemma : vs-map-into-subspace
∀[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[P:Point(B) ⟶ ℙ].
  (f ∈ A ⟶ (b:B | P[b])) supposing ((∀a:Point(A). P[f a]) and vs-subspace(K;B;b.P[b]))
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B
, 
sub-vs: (v:vs | P[v])
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
so_apply: x[s]
, 
vs-map: A ⟶ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
sub-vs: (v:vs | P[v])
, 
vs-point: Point(vs)
, 
mk-vs: mk-vs, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
vs-mul: a * x
, 
vs-add: x + y
, 
guard: {T}
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
implies: P 
⇒ Q
Lemmas referenced : 
vs-point_wf, 
subtype_rel_self, 
vs-subspace_wf, 
vs-map_wf, 
vector-space_wf, 
rng_wf, 
sub-vs_wf, 
vs-add_wf, 
rng_car_wf, 
vs-mul_wf, 
rec_select_update_lemma, 
istype-void
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
instantiate, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
because_Cache, 
equalityIstype, 
productElimination, 
independent_isectElimination, 
functionExtensionality, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
lambdaFormation_alt, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[P:Point(B)  {}\mrightarrow{}  \mBbbP{}].
    (f  \mmember{}  A  {}\mrightarrow{}  (b:B  |  P[b]))  supposing  ((\mforall{}a:Point(A).  P[f  a])  and  vs-subspace(K;B;b.P[b]))
Date html generated:
2019_10_31-AM-06_27_31
Last ObjectModification:
2019_08_12-PM-03_27_39
Theory : linear!algebra
Home
Index