Nuprl Lemma : vs-map-into-subspace

[K:Rng]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[P:Point(B) ⟶ ℙ].
  (f ∈ A ⟶ (b:B P[b])) supposing ((∀a:Point(A). P[f a]) and vs-subspace(K;B;b.P[b]))


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B sub-vs: (v:vs P[v]) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] rng: Rng so_apply: x[s] vs-map: A ⟶ B subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] and: P ∧ Q sub-vs: (v:vs P[v]) vs-point: Point(vs) mk-vs: mk-vs top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt vs-mul: x vs-add: y guard: {T} vs-subspace: vs-subspace(K;vs;x.P[x]) implies:  Q
Lemmas referenced :  vs-point_wf subtype_rel_self vs-subspace_wf vs-map_wf vector-space_wf rng_wf sub-vs_wf vs-add_wf rng_car_wf vs-mul_wf rec_select_update_lemma istype-void
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType extract_by_obid isectElimination thin setElimination rename hypothesisEquality applyEquality instantiate universeEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt dependent_functionElimination dependent_set_memberEquality_alt productIsType because_Cache equalityIstype productElimination independent_isectElimination functionExtensionality voidElimination independent_pairFormation promote_hyp lambdaFormation_alt independent_functionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[P:Point(B)  {}\mrightarrow{}  \mBbbP{}].
    (f  \mmember{}  A  {}\mrightarrow{}  (b:B  |  P[b]))  supposing  ((\mforall{}a:Point(A).  P[f  a])  and  vs-subspace(K;B;b.P[b]))



Date html generated: 2019_10_31-AM-06_27_31
Last ObjectModification: 2019_08_12-PM-03_27_39

Theory : linear!algebra


Home Index