Nuprl Lemma : zero-bfs-append

[S:Type]. ∀[K:RngSig]. ∀[ss1,ss2:bag(S)].  (0 ss1 ss2 (0 ss1 ss2) ∈ basic-formal-sum(K;S))


Proof




Definitions occuring in Statement :  zero-bfs: ss basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] universe: Type equal: t ∈ T rng_sig: RngSig bag-append: as bs bag: bag(T)
Definitions unfolded in proof :  top: Top uimplies: supposing a subtype_rel: A ⊆B basic-formal-sum: basic-formal-sum(K;S) zero-bfs: ss member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf bag_wf rng_zero_wf bag-map_wf rng_car_wf bag-append_wf top_wf subtype_rel_bag bag-map-append
Rules used in proof :  universeEquality axiomEquality independent_pairEquality cumulativity productEquality because_Cache voidEquality voidElimination isect_memberEquality lambdaEquality independent_isectElimination hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[ss1,ss2:bag(S)].    (0  *  ss1  +  ss2  =  (0  *  ss1  +  0  *  ss2))



Date html generated: 2018_05_22-PM-09_44_36
Last ObjectModification: 2018_01_08-PM-02_21_07

Theory : linear!algebra


Home Index