Nuprl Lemma : zero-bfs-append
∀[S:Type]. ∀[K:RngSig]. ∀[ss1,ss2:bag(S)].  (0 * ss1 + ss2 = (0 * ss1 + 0 * ss2) ∈ basic-formal-sum(K;S))
Proof
Definitions occuring in Statement : 
zero-bfs: 0 * ss
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
, 
bag-append: as + bs
, 
bag: bag(T)
Definitions unfolded in proof : 
top: Top
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
zero-bfs: 0 * ss
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
bag_wf, 
rng_zero_wf, 
bag-map_wf, 
rng_car_wf, 
bag-append_wf, 
top_wf, 
subtype_rel_bag, 
bag-map-append
Rules used in proof : 
universeEquality, 
axiomEquality, 
independent_pairEquality, 
cumulativity, 
productEquality, 
because_Cache, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[ss1,ss2:bag(S)].    (0  *  ss1  +  ss2  =  (0  *  ss1  +  0  *  ss2))
Date html generated:
2018_05_22-PM-09_44_36
Last ObjectModification:
2018_01_08-PM-02_21_07
Theory : linear!algebra
Home
Index