Nuprl Lemma : subtype_rel_bag
∀[B,A:Type].  bag(A) ⊆r bag(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
label: ...$L... t
, 
guard: {T}
, 
prop: ℙ
, 
permutation: permutation(T;L1;L2)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
bag_wf, 
subtype_rel_wf, 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
subtype_rel_list, 
equal_wf, 
equal-wf-base, 
length_wf_nat, 
nat_wf, 
permute_list_wf, 
int_seg_wf, 
length_wf, 
inject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
lambdaFormation, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
productEquality, 
dependent_pairFormation, 
independent_pairFormation, 
promote_hyp, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
functionExtensionality, 
natural_numberEquality
Latex:
\mforall{}[B,A:Type].    bag(A)  \msubseteq{}r  bag(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2017_10_01-AM-08_45_00
Last ObjectModification:
2017_07_26-PM-04_30_27
Theory : bags
Home
Index