Nuprl Lemma : subtype_rel_bag

[B,A:Type].  bag(A) ⊆bag(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  bag: bag(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] label: ...$L... t guard: {T} prop: permutation: permutation(T;L1;L2) exists: x:A. B[x] cand: c∧ B
Lemmas referenced :  bag_wf subtype_rel_wf list_wf quotient-member-eq permutation_wf permutation-equiv subtype_rel_list equal_wf equal-wf-base length_wf_nat nat_wf permute_list_wf int_seg_wf length_wf inject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination lambdaFormation rename independent_isectElimination dependent_functionElimination applyEquality independent_functionElimination productEquality dependent_pairFormation independent_pairFormation promote_hyp dependent_set_memberEquality hyp_replacement applyLambdaEquality setElimination functionExtensionality natural_numberEquality

Latex:
\mforall{}[B,A:Type].    bag(A)  \msubseteq{}r  bag(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2017_10_01-AM-08_45_00
Last ObjectModification: 2017_07_26-PM-04_30_27

Theory : bags


Home Index