Nuprl Lemma : pscm-presheaf-id-fun

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[H:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; H; X)].
  ((presheaf-id-fun(X))s presheaf-id-fun(H) ∈ {H ⊢ _:((A)s ⟶ (A)s)})


Proof




Definitions occuring in Statement :  presheaf-id-fun: presheaf-id-fun(X) presheaf-fun: (A ⟶ B) pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B presheaf-type: {X ⊢ _} psc-snd: q pscm+: tau+ pscm-ap-term: (t)s psc-fst: p pscm-ap-type: (AF)s pscm-comp: F pscm-adjoin: (s;u) pscm-ap: (s)x pi2: snd(t) presheaf-id-fun: presheaf-id-fun(X) uimplies: supposing a squash: T prop: all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  psc_map_wf small-category-cumulativity-2 presheaf-type_wf ps_context_wf small-category_wf psc-snd_wf subtype_rel-equal presheaf-term_wf pscm-ap-type_wf presheaf-fun_wf equal_wf squash_wf true_wf istype-universe pscm-presheaf-fun presheaf-type-cumulativity2 ps_context_cumulativity2 subtype_rel_self iff_weakening_equal equal_functionality_wrt_subtype_rel2 pscm-presheaf-lam
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache setElimination rename productElimination independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[H:ps\_context\{j:l\}(C)].
\mforall{}[s:psc\_map\{j:l\}(C;  H;  X)].
    ((presheaf-id-fun(X))s  =  presheaf-id-fun(H))



Date html generated: 2020_05_20-PM-01_30_33
Last ObjectModification: 2020_04_02-PM-05_58_05

Theory : presheaf!models!of!type!theory


Home Index