Nuprl Lemma : pscm-presheaf-id-fun
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[H:ps_context{j:l}(C)]. ∀[s:psc_map{j:l}(C; H; X)].
  ((presheaf-id-fun(X))s = presheaf-id-fun(H) ∈ {H ⊢ _:((A)s ⟶ (A)s)})
Proof
Definitions occuring in Statement : 
presheaf-id-fun: presheaf-id-fun(X), 
presheaf-fun: (A ⟶ B), 
pscm-ap-term: (t)s, 
presheaf-term: {X ⊢ _:A}, 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
psc_map: A ⟶ B, 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
presheaf-type: {X ⊢ _}, 
psc-snd: q, 
pscm+: tau+, 
pscm-ap-term: (t)s, 
psc-fst: p, 
pscm-ap-type: (AF)s, 
pscm-comp: G o F, 
pscm-adjoin: (s;u), 
pscm-ap: (s)x, 
pi2: snd(t), 
presheaf-id-fun: presheaf-id-fun(X), 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
all: ∀x:A. B[x], 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
psc_map_wf, 
small-category-cumulativity-2, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf, 
psc-snd_wf, 
subtype_rel-equal, 
presheaf-term_wf, 
pscm-ap-type_wf, 
presheaf-fun_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
pscm-presheaf-fun, 
presheaf-type-cumulativity2, 
ps_context_cumulativity2, 
subtype_rel_self, 
iff_weakening_equal, 
equal_functionality_wrt_subtype_rel2, 
pscm-presheaf-lam
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[H:ps\_context\{j:l\}(C)].
\mforall{}[s:psc\_map\{j:l\}(C;  H;  X)].
    ((presheaf-id-fun(X))s  =  presheaf-id-fun(H))
Date html generated:
2020_05_20-PM-01_30_33
Last ObjectModification:
2020_04_02-PM-05_58_05
Theory : presheaf!models!of!type!theory
Home
Index