Nuprl Lemma : BrouwerFPT_wf

[n:ℕ]. (BrouwerFPT(n) ∈ ℙ)


Proof




Definitions occuring in Statement :  BrouwerFPT: BrouwerFPT(n) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T BrouwerFPT: BrouwerFPT(n) prop: all: x:A. B[x] implies:  Q real-unit-ball: B(n) subtype_rel: A ⊆B exists: x:A. B[x]
Lemmas referenced :  real-unit-ball_wf req-vec_wf real_wf rless_wf int-to-real_wf real-vec-dist_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry natural_numberEquality productEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (BrouwerFPT(n)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_29_35
Last ObjectModification: 2019_07_08-PM-09_26_44

Theory : real!vectors


Home Index