Nuprl Lemma : NoBallRetraction_wf
∀[n:ℕ]. (NoBallRetraction(n) ∈ ℙ)
Proof
Definitions occuring in Statement : 
NoBallRetraction: NoBallRetraction(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
NoBallRetraction: NoBallRetraction(n)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-unit-ball: B(n)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not_wf, 
real-unit-ball_wf, 
req-vec_wf, 
req_wf, 
real-vec-norm_wf, 
int-to-real_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
because_Cache, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (NoBallRetraction(n)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-11_29_41
Last ObjectModification:
2019_07_08-PM-09_28_43
Theory : real!vectors
Home
Index