Nuprl Lemma : cube-lower_wf

[k:ℕ]. ∀[c:real-cube(k)].  (c- ∈ ℝ^k)


Proof




Definitions occuring in Statement :  cube-lower: c- real-cube: real-cube(k) real-vec: ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-lower: c- real-cube: real-cube(k) top: Top
Lemmas referenced :  pi1_wf_top real-vec_wf istype-void real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_pairEquality isect_memberEquality_alt voidElimination axiomEquality equalityTransitivity equalitySymmetry universeIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:real-cube(k)].    (c-  \mmember{}  \mBbbR{}\^{}k)



Date html generated: 2019_10_30-AM-11_31_14
Last ObjectModification: 2019_09_27-PM-01_25_10

Theory : real!vectors


Home Index