Nuprl Lemma : cube-upper_wf
∀[k:ℕ]. ∀[c:real-cube(k)].  (c+ ∈ ℝ^k)
Proof
Definitions occuring in Statement : 
cube-upper: c+
, 
real-cube: real-cube(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cube-upper: c+
, 
real-cube: real-cube(k)
, 
pi2: snd(t)
Lemmas referenced : 
real-cube_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:real-cube(k)].    (c+  \mmember{}  \mBbbR{}\^{}k)
Date html generated:
2019_10_30-AM-11_31_09
Last ObjectModification:
2019_09_27-PM-01_21_44
Theory : real!vectors
Home
Index