Nuprl Lemma : cube-upper_wf

[k:ℕ]. ∀[c:real-cube(k)].  (c+ ∈ ℝ^k)


Proof




Definitions occuring in Statement :  cube-upper: c+ real-cube: real-cube(k) real-vec: ^n nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube-upper: c+ real-cube: real-cube(k) pi2: snd(t)
Lemmas referenced :  real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:real-cube(k)].    (c+  \mmember{}  \mBbbR{}\^{}k)



Date html generated: 2019_10_30-AM-11_31_09
Last ObjectModification: 2019_09_27-PM-01_21_44

Theory : real!vectors


Home Index