Nuprl Lemma : find-approx-fixpoint-unit-ball

n:ℕ. ∀f:{f:B(n) ⟶ B(n)| 
          (∀e:{e:ℝr0 < e} . ∃del:{del:ℝr0 < del} . ∀x,y:B(n).  ((d(x;y) < del)  (d(f x;f y) < e)))
          ∧ (∀x:B(n). x ≠ x))} . ∀e:{e:ℝr0 < e} .
  ∃p:B(n). (↓d(f p;p) < e)


Proof




Definitions occuring in Statement :  real-unit-ball: B(n) real-vec-sep: a ≠ b real-vec-dist: d(x;y) rless: x < y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q exists: x:A. B[x] implies:  Q real-unit-ball: B(n) subtype_rel: A ⊆B not: ¬A false: False
Lemmas referenced :  find-approx-fp_wf real_wf rless_wf int-to-real_wf real-unit-ball_wf real-vec-dist_wf real-vec-sep_wf istype-void istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis setIsType universeIsType isectElimination natural_numberEquality functionIsType because_Cache sqequalRule productIsType setElimination rename applyEquality lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\{f:B(n)  {}\mrightarrow{}  B(n)| 
                    (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\} 
                          \mexists{}del:\{del:\mBbbR{}|  r0  <  del\}  .  \mforall{}x,y:B(n).    ((d(x;y)  <  del)  {}\mRightarrow{}  (d(f  x;f  y)  <  e)))
                    \mwedge{}  (\mneg{}(\mforall{}x:B(n).  f  x  \mneq{}  x))\}  .  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}p:B(n).  (\mdownarrow{}d(f  p;p)  <  e)



Date html generated: 2019_10_30-AM-11_29_25
Last ObjectModification: 2019_07_30-PM-00_54_30

Theory : real!vectors


Home Index