Step
*
3
1
of Lemma
rat-cube-complex-polyhedron-compact1
.....assertion..... 
1. k : ℕ
2. K : ℚCube(k) List
3. 0 < ||K||
4. (∀c∈K.↑Inhabited(c))
5. mcompact(stable-union(ℝ^k;ℕ||K||;i,x.in-rat-cube(k;x;K[i]));rn-prod-metric(k))
⊢ stable-union(ℝ^k;ℕ||K||;i,x.in-rat-cube(k;x;K[i])) ≡ |K|
BY
{ ((RepeatFor 2 (D 0) THENA Auto) THEN D -1 THEN MemTypeCD THEN Auto) }
Latex:
Latex:
.....assertion..... 
1.  k  :  \mBbbN{}
2.  K  :  \mBbbQ{}Cube(k)  List
3.  0  <  ||K||
4.  (\mforall{}c\mmember{}K.\muparrow{}Inhabited(c))
5.  mcompact(stable-union(\mBbbR{}\^{}k;\mBbbN{}||K||;i,x.in-rat-cube(k;x;K[i]));rn-prod-metric(k))
\mvdash{}  stable-union(\mBbbR{}\^{}k;\mBbbN{}||K||;i,x.in-rat-cube(k;x;K[i]))  \mequiv{}  |K|
By
Latex:
((RepeatFor  2  (D  0)  THENA  Auto)  THEN  D  -1  THEN  MemTypeCD  THEN  Auto)
Home
Index