Nuprl Lemma : rat-cube-complex-polyhedron-compact1
∀k:ℕ. ∀K:ℚCube(k) List.  (0 < ||K|| ⇒ (∀c∈K.↑Inhabited(c)) ⇒ mcompact(|K|;rn-prod-metric(k)))
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|, 
rn-prod-metric: rn-prod-metric(n), 
mcompact: mcompact(X;d), 
l_all: (∀x∈L.P[x]), 
length: ||as||, 
list: T List, 
nat: ℕ, 
assert: ↑b, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
inhabited-rat-cube: Inhabited(c), 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
l_exists: (∃x∈L. P[x]), 
rat-cube-complex-polyhedron: |K|, 
ext-eq: A ≡ B, 
iff: P ⇐⇒ Q, 
stable-union: Error :stable-union, 
subtype_rel: A ⊆r B, 
l_all: (∀x∈L.P[x]), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
so_apply: x[s1;s2], 
prop: ℙ, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
nat: ℕ, 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
so_lambda: λ2x y.t[x; y], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
l_exists_wf, 
metric-on-subtype, 
rat-cube-complex-polyhedron_wf, 
Error :stable-union_wf, 
mcompact_functionality, 
mcompact-rat-cube, 
istype-nat, 
list_wf, 
istype-less_than, 
l_member_wf, 
inhabited-rat-cube_wf, 
assert_wf, 
l_all_wf2, 
mcomplete-rn-prod-metric, 
nsub_finite, 
meq_wf, 
in-rat-cube_functionality, 
int_formula_prop_less_lemma, 
intformless_wf, 
istype-le, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
in-rat-cube_wf, 
rational-cube_wf, 
length_wf, 
int_seg_wf, 
rn-prod-metric_wf, 
real-vec_wf, 
mcompact-stable-union
Rules used in proof : 
functionIsType, 
applyEquality, 
closedConclusion, 
productIsType, 
setIsType, 
dependent_set_memberEquality_alt, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
imageElimination, 
productElimination, 
independent_isectElimination, 
rename, 
setElimination, 
because_Cache, 
lambdaEquality_alt, 
sqequalRule, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:\mBbbQ{}Cube(k)  List.    (0  <  ||K||  {}\mRightarrow{}  (\mforall{}c\mmember{}K.\muparrow{}Inhabited(c))  {}\mRightarrow{}  mcompact(|K|;rn-prod-metric(k)))
Date html generated:
2019_10_31-AM-06_03_59
Last ObjectModification:
2019_10_30-AM-11_45_41
Theory : real!vectors
Home
Index